Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(22): 226201, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37327436

ABSTRACT

Ultrafast laser irradiation can induce spontaneous self-organization of surfaces into dissipative structures with nanoscale reliefs. These surface patterns emerge from symmetry-breaking dynamical processes that occur in Rayleigh-Bénard-like instabilities. In this study, we demonstrate that the coexistence and competition between surface patterns of different symmetries in two dimensions can be numerically unraveled using the stochastic generalized Swift-Hohenberg model. We originally propose a deep convolutional network to identify and learn the dominant modes that stabilize for a given bifurcation and quadratic model coefficients. The model is scale-invariant and has been calibrated on microscopy measurements using a physics-guided machine learning strategy. Our approach enables the identification of experimental irradiation conditions for a desired self-organization pattern. It can be generally applied to predict structure formation in situations where the underlying physics can be approximately described by a self-organization process and data is sparse and nontime series. Our Letter paves the way for supervised local manipulation of matter using timely controlled optical fields in laser manufacturing.


Subject(s)
Light , Physics , Physics/methods , Microscopy
2.
Entropy (Basel) ; 24(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36010759

ABSTRACT

A self-organization hydrodynamic process has recently been proposed to partially explain the formation of femtosecond laser-induced nanopatterns on Nickel, which have important applications in optics, microbiology, medicine, etc. Exploring laser pattern space is difficult, however, which simultaneously (i) motivates using machine learning (ML) to search for novel patterns and (ii) hinders it, because of the few data available from costly and time-consuming experiments. In this paper, we use ML to predict novel patterns by integrating partial physical knowledge in the form of the Swift-Hohenberg (SH) partial differential equation (PDE). To do so, we propose a framework to learn with few data, in the absence of initial conditions, by benefiting from background knowledge in the form of a PDE solver. We show that in the case of a self-organization process, a feature mapping exists in which initial conditions can safely be ignored and patterns can be described in terms of PDE parameters alone, which drastically simplifies the problem. In order to apply this framework, we develop a second-order pseudospectral solver of the SH equation which offers a good compromise between accuracy and speed. Our method allows us to predict new nanopatterns in good agreement with experimental data. Moreover, we show that pattern features are related, which imposes constraints on novel pattern design, and suggest an efficient procedure of acquiring experimental data iteratively to improve the generalization of the learned model. It also allows us to identify the limitations of the SH equation as a partial model and suggests an improvement to the physical model itself.

SELECTION OF CITATIONS
SEARCH DETAIL
...